complex – Effective evaluation of real / imaginary parts of long expressions

I have the following expression, rather compact, but complex (see below). I just want the real part of this. Now, when I make the habit, that is to say ComplexExpand[Re[...]]//Simplify since all parameters and functions are real, the number of terms produced by ComplexExpand is apparently too large (about 6000 terms) for Simplify manage. It has been running for almost an hour now, with no sign of conclusion.

From similar expressions in the same context, I know that the result of the simplification is also quite compact (just like the expression I'm starting with), so I'm wondering if it's possible to skip the "Expand" part. "from ComplexExpand? Why develop in thousands of terms, while everything resonates in a compact expression?

There must be a more efficient way, right?

- ((I E ^ (I am[Phi] + t [Omega]I -
He [Omega]r) ((1 / (
1 + (i [Nu] -
I r [Nu]) ^ 2 [Chi]^ 2 Cos[[Theta]]^ 2)) (r ^ 2 + [Chi]^ 2 Cos[
 [Theta]]^ 2) (-1 + (2 r) / (
r ^ 2 + [Chi]^ 2 Cos[[Theta]]^ 2)) (-m [Chi] (r (-2 +
r (I[Nu] +
r[Nu]) ^ 2 ((-2 + r) r + [Chi]^ 2)) + (I i [Nu] +
r[Nu]) ^ 2 [Chi]^ 2 (r ^ 2 + [Chi]^ 2) Cos[[Theta]]^ 2) 
(I RaI[r] + RaR[r]) (I say[[Theta]]+
SaR[[Theta]]) + (I [Omega]I +[Omega]r) (-r (r ^ 3 + (2 
+ r + r ^ 3 (i [Nu] - I r[Nu]) ^ 2 +
2 r ^ 2 (I i [Nu] + r[Nu]) ^ 2)[Chi]^ 2 +
r (i [Nu] - I r[Nu]) ^ 2 [Chi]^ 4) + [Chi]^ 2 (r (2 -
r + 2 r ^ 2 (I i [Nu] + r[Nu]) ^ 2) + (-1 +
r ^ 2 (I i [Nu] + r[Nu]) ^ 2)[Chi]^ 2 + (I i [Nu] +
r[Nu]) ^ 2 [Chi]^ 4) Cos[[Theta]]^ 2) (I RaI[r] +
RaR[r]) (I say[[Theta]]+ SaR[[Theta]]+
r (I[Nu] +
r[Nu]) ((-2 +
r) r + [Chi]^ 2) (r ^ 2 + [Chi]^ 2) (-1 + (I i [Nu] +
r[Nu]) ^ 2 [Chi]^ 2 Cos[[Theta]]^ 2) (I SaI[[Theta]]+
SaR[[Theta]]) (I drift[1][RaI][r]    +
Derivative[1][RaR][r]) - (I i [Nu] + r[Nu]) (1 +
r ^ 2 (I i [Nu] + r[Nu]) ^ 2)[Chi]^ 2 ((-2 +
r) r + [Chi]^ 2) Cos[[Theta]](I RaI[r] +
RaR[r]) Peach[[Theta]](I drift[1][SaI][[Theta]]+
Derivative[1][SaR][[Theta]])) + (
1 / (- 1 + (I i [Nu] + r[Nu]) ^ 2 [Chi]^ 2 Cos[[Theta]]^ 2))
2 r[Chi] Peach[[Theta]]^ 2 (1 /
2 r (I[Nu] +
r[Nu]) [Chi] ((-2 + r) r + [Chi]^ 2) (-2 + (I i [Nu] +
r[Nu]) ^ 2 [Chi]^ 2 + (I i [Nu] +
r[Nu]) ^ 2 [Chi]^ 2 Cos[2 [Theta]]) (I say[[Theta]]+
SaR[[Theta]]) (I drift[1][RaI][r]    +
Derivative[1][RaR][r]) - (I RaI[r] +
RaR[r]) ((-r [Chi] (-2 +
r (I[Nu] +
r[Nu]) ^ 2 ((-2 +
r) r + [Chi]^ 2)) (I [Omega]I +[Omega]r) +
m[Chi]^ 2 (1 + (I i [Nu] +
r[Nu]) ^ 2 [Chi]^ 2) baby crib[[Theta]]^ 2 - (I i [Nu] +
r[Nu]) ^ 2 [Chi]^ 3 Cos[[Theta]]^ 2 ((r ^ 2 + 
[Chi]^ 2) (I [Omega]I +[Omega]r) + m [Chi] Crib[[Theta]]^ 2) +
m r (-2 + r + 2 r ^ 2 (i [Nu] - I r[Nu]) ^ 2 +
r ^ 3 (I i [Nu] + r[Nu]) ^ 2 +
r (I[Nu] +
r[Nu]) ^ 2 [Chi]^ 2) Csc[[Theta]]^ 2) (I SaI[
    [Theta]]+ SaR[[Theta]]) + (I i [Nu] + r[Nu]) (1 +
r ^ 2 (I i [Nu] + r[Nu]) ^ 2)[Chi] (-2 +
r) r + [Chi]^ 2) baby crib[[Theta]](I drift[1][
              SaI][[Theta]]+
Derivative[1][SaR][[Theta]])))))) / ((1 +
r ^ 2 (I i [Nu] + r[Nu]) ^ 2) ((-2 +
r) r + [Chi]^ 2) (r ^ 2 + [Chi]^ 2 Cos[[Theta]]^ 2) ^ 2))