Is $mathbb{E}left(left| X right| right) < infty$ if and only if $mathbb{E}left(X^2right) < infty$?

Given a random variable, $X$, in a probability space, $(Omega, mathbb{P})$, do we have that $mathbb{E}left(left| X right| right) < infty$ if and only if $mathbb{E}left(X^2right) < infty$?

If not the does one imply the other?

Thanks!