symbolic – How to find eigenvalues of 8×8 matrix?

I am new to Mathematica, and was trying to find the eigenvalues of an 8×8 matrix using Mathematica. I have fairly simplifies the matrix A into a mathematical expression and I know the final expressions of my eigenvalues should look like as well. However, I keep getting this HUGE expression that makes no sense to me and would love some guidance here.

My flux Jacobian (A) is:
enter image description here

The last row is simplified to:
enter image description here

The code is:

KE = 1/2*(Q2^2/Q1 + Q3^2/Q1 + Q4^2/Q1)
Btsq = Q5^2 + Q6^2 + Q7^2
P = (gamma - 1)*(Q5 - KE - Btsq/(2*mu0))
F1 = Q2
F2 = Q2^2/Q1 - (Q5^2/mu0) + P + Btsq/(2*mu0)
F3 = (Q2*Q3)/Q1 - (Q5*Q5)/Q1
F4 = (Q2*Q4)/Q1 - (Q5*Q7)/mu0
F5 = 0
F6 = (Q2*Q6)/Q1 - (Q3*Q5)/Q1
F7 = (Q2*Q7)/Q1 - (Q4*Q5)/Q1
F8 = (Q8 + P + (Btsq/(2*mu0)))*Q2/Q1 - 
  Q5*(Q5*Q2/Q1 + (Q6*Q3)/Q1 + (Q7*Q4)/Q1)/mu0
A = ({
    {D(F1, Q1), D(F1, Q2), D(F1, Q3), D(F1, Q4), D(F1, Q5), D(F1, Q6),
      D(F1, Q7), D(F1, Q8)},
    {D(F2, Q1), D(F2, Q2), D(F2, Q3), D(F2, Q4), D(F2, Q5), D(F2, Q6),
      D(F2, Q7), D(F2, Q8)},
    {D(F3, Q1), D(F3, Q2), D(F3, Q3), D(F3, Q4), D(F3, Q5), D(F3, Q6),
      D(F3, Q7), D(F3, Q8)},
    {D(F4, Q1), D(F4, Q2), D(F4, Q3), D(F4, Q4), D(F4, Q5), D(F4, Q6),
      D(F4, Q7), D(F4, Q8)},
    {D(F5, Q1), D(F5, Q2), D(F5, Q3), D(F5, Q4), D(F5, Q5), D(F5, Q6),
      D(F5, Q7), D(F5, Q8)},
    {D(F6, Q1), D(F6, Q2), D(F6, Q3), D(F6, Q4), D(F6, Q5), D(F6, Q6),
      D(F6, Q7), D(F6, Q8)},
    {D(F7, Q1), D(F7, Q2), D(F7, Q3), D(F7, Q4), D(F7, Q5), D(F7, Q6),
      D(F7, Q7), D(F7, Q8)},
    {D(F8, Q1), D(F8, Q2), D(F8, Q3), D(F8, Q4), D(F8, Q5), D(F8, Q6),
      D(F8, Q7), D(F8, Q8)}
   });
A = ({
   {D(F1, Q1), D(F1, Q2), D(F1, Q3), D(F1, Q4), D(F1, Q5), D(F1, Q6), 
    D(F1, Q7), D(F1, Q8)},
   {D(F2, Q1), D(F2, Q2), D(F2, Q3), D(F2, Q4), D(F2, Q5), D(F2, Q6), 
    D(F2, Q7), D(F2, Q8)},
   {D(F3, Q1), D(F3, Q2), D(F3, Q3), D(F3, Q4), D(F3, Q5), D(F3, Q6), 
    D(F3, Q7), D(F3, Q8)},
   {D(F4, Q1), D(F4, Q2), D(F4, Q3), D(F4, Q4), D(F4, Q5), D(F4, Q6), 
    D(F4, Q7), D(F4, Q8)},
   {D(F5, Q1), D(F5, Q2), D(F5, Q3), D(F5, Q4), D(F5, Q5), D(F5, Q6), 
    D(F5, Q7), D(F5, Q8)},
   {D(F6, Q1), D(F6, Q2), D(F6, Q3), D(F6, Q4), D(F6, Q5), D(F6, Q6), 
    D(F6, Q7), D(F6, Q8)},
   {D(F7, Q1), D(F7, Q2), D(F7, Q3), D(F7, Q4), D(F7, Q5), D(F7, Q6), 
    D(F7, Q7), D(F7, Q8)},
   {D(F8, Q1), D(F8, Q2), D(F8, Q3), D(F8, Q4), D(F8, Q5), D(F8, Q6), 
    D(F8, Q7), D(F8, Q8)}
  })
Eigenvalues(A);
A1 = Simplify(
  A, {Q1 == (Rho), Q2 == (Rho)*u, Q3 == (Rho)*v, Q4 == (Rho)*w, 
   Q5 == (CurlyEpsilon), Q6 == Bx, Q7 == By, Q8 == Bz})
B = Bx^2 + By^2 + Bz^2 == Bt^2
U = u^2 + v^2 + w^2 == ut^2
A2 = Simplify(Simplify(A1, {B, U}))
Eigenvalues(A2)

For some reason, I am getting completely meaningless output.