## conditional – do[psi[n+1] = Si[cond. A, If[cond. B, form. 1, form. 2], shape. 2], {n, 0,11} does not perform well

I had trouble getting the program to do what I wanted.
I have defined a conditional recursive algorithm to evaluate the next pair of coordinates (psi[n+1], phi[n+1]) of (psi[n], phi[n]):

$$displaystyle ( psi[n+1] phi[n+1]) = begin {cases} ( psi[n]+2 phi[n] phi[n]), & text {if} L < psi[n]+2 phi[n]<2 pi-L, \ & \ ( psi_2[Psi[Psi[psi[psi[n] phi[n]], phi_2[Psi[Psi[psi[psi[n] phi[n]]), & text {elsewhere. } end {cases}$$

Right here $$psi_2 (u, v)$$ and $$phi_2 (u, v)$$ are two functions.
These functions work well if I give the value directly.
For example, if (psi[n], phi[n]) = (u, v) = (5.14159,0.1) (this appears later), then the functions give (psi[n+1], phi[n+1]) = (psi2[u,v], phi2[u,v]) = (2.81768.1.95294).

However, the execution of the recursive program fails the first nontrivial condition (that is, when L <Mod[psi[psi[psi[psi[n] + 2 * phi[n], 2 ft]<2 Pi – L).
Please let me know if I can make the following description clearer. Thank you!

The functions:

``````R = 100;
b = 95;
r = 10;
T = ArcCos[(R^2 + b^2 - r^2)/(2*b*R)]; (* the angle Psi_A *)
L = ArcCos[(R^2 - r^2 - b^2)/(2*b*r)]; (* the angle psi_A *)
Phi[u_, v_] : = ArcCos[(r*Cos[v] + b * Cos[u + v])

; (* withdrawal angle on Gamma_R *)
psi[u_, v_] : = u + v - Phi[u, v] - 2 * Pi; (* withdrawal position *)
not[u_, v_] : = Floor[(T-Psi[(T-Psi[(T-Psi[(T-Psi[u, v]) / (2 * Phi[u, v])]; (* reflection numbers on Gamma_R *)
phi2[u_, v_] : = ArcCos[(R*Cos[Phi[(R*Cos[Phi[(R*Cos[Phi[(R*Cos[Phi[u, v]]- b * Cos[Psi[Psi[Psi[Psi[u, v] + (2 * n[u, v] + 1) * Phi[u, v]])

; (* the returing angle on Gamma_r *)
psi2[u_, v_] : = Psi[u, v] + (2 * n[u, v] + 1) * Phi[u, v] + phi2[u, v]; (* the return position *)
``````

The conditional recursive part (essentially the structure that I describe in the title, with only two coordinates):

``````psi[0] = Pi;
phi[0] = 0.1;
Make[psi[n + 1] =
Yes[L<Mod[psi[L<Mod[psi[L``````
``` The first nine or ten steps work well. However, it is not possible to evaluate n = 11 from n = 10. The output ((I've skipped the results here)) {0, [Pi], 0.1} {} 1,3.34159,0.1 ... {} 10,5.14159,0.1 {11.4.28843 +0.953167 (1 + 2 10[5.14159,0.1]) + ArcCos[1/10(579104-95Cos[428843+0953167(1+210[1/10(579104-95Cos[428843+0953167(1+210[1/10(579104-95Cos[428843+0953167(1+210[1/10(579104-95Cos[428843+0953167(1+210[5.14159,0.1])])], ArcCos[1/10(579104-95Cos[428843+0953167(1+210[1/10(579104-95Cos[428843+0953167(1+210[1/10(579104-95Cos[428843+0953167(1+210[1/10(579104-95Cos[428843+0953167(1+210[5.14159,0.1])])]} {12, if[ArcCos[35/76]<Mod[428843+0953167(1+210[428843+0953167(1+210[428843+0953167(1+210[428843+0953167(1+210[5.14159,0.1]) +3 ArcCos[1/10(579104-95Cos[428843+0953167(1+210[1/10(579104-95Cos[428843+0953167(1+210[1/10(579104-95Cos[428843+0953167(1+210[1/10(579104-95Cos[428843+0953167(1+210[5.14159,0.1])])], 2 [Pi]],Yes[Mod[psi[Mod[psi[Mod[psi[Mod[psi[n]+2 phi[n], 2 [Pi]]<2 [Pi]-L, psi[n]+2 phi[n]psi2[psi[psi[psi[psi[n], phi[n]]]psi2[psi[psi[psi[psi[n], phi[n]]],Yes[ArcCos[35/76]<Mod[428843+0953167(1+210[428843+0953167(1+210[428843+0953167(1+210[428843+0953167(1+210[5.14159,0.1]) +3 ArcCos[1/10(579104-95Cos[428843+0953167(1+210[1/10(579104-95Cos[428843+0953167(1+210[1/10(579104-95Cos[428843+0953167(1+210[1/10(579104-95Cos[428843+0953167(1+210[5.14159,0.1])])], 2 [Pi]],Yes[Mod[psi[Mod[psi[Mod[psi[Mod[psi[n]+2 phi[n], 2 [Pi]]<2 [Pi]-L, phi[n], phi2[psi[psi[psi[psi[n], phi[n]]], phi2[psi[psi[psi[psi[n], phi[n]]]} ```
``` .rating_form_1 .rating_form .item {color:#ffd700;font-size:10px;} .rating_form_1 .rating_form .item.hover {color:#ff7f00;} .rating_form_1 .def {font-size:4px;} jQuery(document).ready(function() {jQuery.ajax({type: "POST",url : rating_form_script.ajaxurl,data : { action : "display_rating_form_ajax", args : {"id":1,"post_id":31962,"comment_id":0,"custom_id":"0","user_id":0,"term_id":0,"title":false,"score":true,"total":true,"stats":true,"user_stats":false,"tooltip":true,"result":true,"rich_snippet":true,"is_widget":false,"state":"","before_content":"","after_content":"","rates":"rating,ratings","txt_score":"%1\$s\/%2\$s"} }, success : function(data) { jQuery("body").find("[data-id=\"RFR1P31962\"]").html(data); }});}); { "@context": "http://schema.org", "@type": "Article", "mainEntityOfPage": { "@type": "WebPage", "@id": "https://newproxylists.com/conditional-dopsin1-sicond-a-ifcond-b-form-1-form-2-shape-2-n-011does-not-perform-well/" }, "headline": "conditional - do[psi[n+1] = Si[cond. A, If[cond. B, form. 1, form. 2], shape. 2], {n, 0,11} does not perform well", "url": "https://newproxylists.com/conditional-dopsin1-sicond-a-ifcond-b-form-1-form-2-shape-2-n-011does-not-perform-well/", "author": { "@type": "Person", "name":"Admin" }, "publisher": { "@type": "Organization", "name": "New and Fresh Private + Public Proxies Lists Everyday!", "logo": { "@type": "ImageObject", "url": " ", "width": "", "height": "" } }, "datePublished": "2018-12-29T11:04:07+00:00", "dateModified": "2018-12-29T11:04:07+00:00", "aggregateRating": { "@type": "AggregateRating", "bestRating": "5", "worstRating": "1", "ratingValue": "5", "ratingCount": "18" } } ```
``` Author AdminPosted on December 29, 2018Tags 011does, 1, 2, conditional, dopsin1, form, Ifcond, perform, shape, Sicond ```
``` ```