Well, after reading a lot about how plotting expressions involving `NIntegrate`

can take a lot of time, and how to overcome this issue with `DSolve`

, I still have problems when plotting this function:

```
myfunction(delta_) =
5*(2 + 3*NIntegrate((E^(-(1/2) (-((3 Sqrt(5/2) delta)/(-1 + delta)) +
t)^2) (1 +
E^(-((3 Sqrt(10) delta t)/(-1 + delta)))) GammaRegularized(
9/2, 0, (0.222222 (4.74342 + (-1. + 1. delta) t)^2)/(-1. +
delta)^2))/Sqrt(2 (Pi)), {t,
0, (3*Sqrt(10))/(2*(1 - delta))}, AccuracyGoal -> Infinity,
Method -> {"LocalAdaptive", "SymbolicProcessing" -> 0},
MaxRecursion -> 100) -
3*NIntegrate((E^(-(1/2) (-((3 Sqrt(5/2) delta)/(-1 + delta)) +
t)^2) (1 +
E^(-((3 Sqrt(10) delta t)/(-1 + delta)))) GammaRegularized(
9/2, 0, 1/18 ((3 Sqrt(5/2))/(-1 + delta) + t)^2))/
Sqrt(2 (Pi)),
{t, 0, (3*Sqrt(10))/(2*(1 - delta))},
AccuracyGoal -> Infinity,
Method -> {"LocalAdaptive", "SymbolicProcessing" -> 0},
MaxRecursion -> 100))
Plot(myfunction(delta), {delta, 0, 1})
```

It won’t finish after serval minutes.

I used `AccuracyGoal -> Infinity`

and so because, when calculating and plotting the result of the integration separately, I get better results.

So, is there any way to speed up this plot (and the calculation itself, as a matter of fact)? What am I missing?