digital integration – Cubic Anharmonic Oscillator with Numerov Method

I've tried to solve the Schrödinger equation for quantum cubic anharmonic oscillator with the Numerov algorithm, but I have doubts about the probability of density (3D graph of position and time) for a consistent state. first example.

M = 20; Lamb = 0.5;
V[s_] : = 0.5 * s ^ 2 + s * [Lambda]; EM = 350.
rturn = FindRoot[V[s] == [Epsilon]m, {s, EM}][[1,2]]; d = 1 / Sqrt[2*EM]; n = round[2 (rturn/d + 4 Pi)]; s = table[-((d (n + 1))/2) + d i, {i, n}];

a[n_, d_]: = DiagonalMatrix[1 + 0 Range[n-Abs[d]], re

;
B = (a[n,-1] + 10 a[n,0] + one[n,1]) / 12;
A = (a[n,-1] - 2 a[n,0] + one[n,1]) / d ^ 2;

KE = - (1/2) * Inverse[B].A;

H = KE + Diagonal Matrix[V[s]];
{eval, evec} = Electronic system[H];
in = Order[eval];
eval = eval[[in]]; evec = evec[[in]];
evalnum = Select[eval, # <= EM &];
L = Length[evalnum];
evecnum[n_] : = evec[[n + 1]]/ Sqrt[d];
cnum = Table[Total[Conjugate[evecnum[n]]* (Pi) ^ (- 1/4) / Sqrt[(2^M)*Factorial[M]]Exp[-(s^2/2)] HermiteH[M, s]*re], {n, 0, L-1}];

realpsinum[t_] : =
Total[ Exp[-I*evalnum*t]* cnum *
Table[evecnum[n], {n, 0, L-1}]]F = 1.2;
B = ListLinePlot[Transpose[{s, Abs[realpsinum[F]]^ 2}]]