plot – flow on the circle

I'm trying to draw a vector field on a circle, especially the vector field in this plot:

VectorPlot[{(Sin[x]) ^ 3, 0}, {x, 0, 2 [Pi]}, {y, -0.001, 0.001},
FrameTicks -> {{[Pi]/ 2, [Pi], 3 [Pi]/ 2, 2 [Pi]}, {-1, 1}},
Epilog ->

Ground[(Sin[x]) ^ 3, {x, 0, 2 [Pi]}, PlotStyle -> Red,
Ticks -> None][[1]], PlotRange -> {{0, 2 [Pi]}, {-1, 1}},
GridLines -> Automatic
]

It was my way of drawing a vector field on the line. But I want to draw this one-dimensional on a circle.

calculation and analysis – How to find and plot the intersection of these three surfaces?

I know how to find the intersection region of these cylinders using integration, but how could I plot this in mathematica? That's what I've

ContourPlot3D[{x^2 + y^2 == 1, x^2 + z^2 == 1, 
  y^2 + z^2 == 1}, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, 
 AxesLabel -> Automatic, PlotLegends -> "Expressions"]

That's what I've got up to here

Plot with a different color for a single curve

How to draw a function $ f (x) = frac {3 (4 + x)} {3 (2-x) -16} $ (say $ x in [-15,15]$ ) on the condition that I want to give a different color for each of the following cases

(i) when $ frac {x + 4} {3x + 10}> $ 0 and $ frac {x ^ 2 + 8x + 12} {3x + 10}> 0 $

(ii) when $ frac {x + 4} {3x + 10}> $ 0 and $ frac {x ^ 2 + 8x + 12} {3x + 10} <0 $

(iii) when $ frac {x + 4} {3x + 10} <0 $ and $ frac {x ^ 2 + 8x + 12} {3x + 10}> 0 $

Plot of the numerical integration of several variables

I'm trying to plot a multivariate integral. But in a way, it does not work. This is my code.

a = 5;
b = 0.1;
f = (1 + Exp[(k - a)])
B = f * (1 / (z - (q ^ 2 + k * q * x) + I * b) +
1 / (z - (q ^ 2 - k * q * x) + I * b));
ListContourPlot[
NIntegrate[Re[B], {x, -1, 1}, {k, -a, a}], {z, 0, 5,
1}, {q, 0, 5, 1}]

I will be more interested in keeping the size of the z and q steps fixed. Any help will be greatly appreciated

Automatic manipulation of experimental data and plot

I have experimental data that looks like this
enter the description of the image here

In the regions of the x positive and negative high, my data is always linear. I want to extract the slope of the data in these regions, take an average and subtract this linear slope from these experimental data.

BMoment = {-0.0000331, -0.0000354, -0.0000334, -0.0000315, -0.0000291,
-0.0000269, -0.0000251, -0.0000234, -0.0000211, -0.0000189,
-0.0000173, -0.0000152, -0.0000131, -0.0000114, -9.51 * 10 ^ -6, 
-9.51 * 10 ^ -6, -5.75 * 10 ^ -6, -3.96 * 10 ^ -6, -2.5 * 10 ^ -6, -6.15 * 10 ^ -7,
1.29 * 10 -6, 3.28 * 10 -6, 4.95 * 10 -6, 6.9 * 10 -6,
8.81 * 10 ^ -6, 0.0000107, 0.000012, 0.0000139, 0.0000156, 0.0000172,
0.0000186, 0.0000199, 0.0000214, 0.0000229, 0.000024, 0.0000259,
0.0000271, 0.0000284, 0.0000294, 0.0000302, 0.0000314, 0.0000322, 
0.0000331, 0.0000334, 0.0000332, 0.0000331, 0.0000321, 0.0000303,
0.0000276, "",
7.27 * 10 ^ -6, -8.61 * 10 ^ -6, -0.000013, -0.0000166, -0.0000189, 
-0.0000208, -0.0000221, -0.0000229, -0.0000236, -0.0000241,
-0.0000242, -0.0000242, "", -0.0000238, -0.0000224, -0.0000214,
-0.0000205, -0.0000192, -0.000018, -0.0000168, -0.0000154,
-0.0000137, -0.0000125, -0.0000109, -9.51 * 10 ^ -6, -7.62 * 10 ^ -6, 
-6.17 * 10 ^ -6, -4.43 * 10 ^ -6, -2.91 * 10 ^ -6, -1.1 * 10 ^ -6, 4.78 * 10 ^ -7,
2.29 * 10 -6, 3.93 * 10 -6, 5.83 * 10 -6, 7.16 * 10 -6,
9.76 * 10 ^ -6, 0.0000116, 0.0000132, 0.0000152, "0.0000198,
0.0000236, 0.0000257, 0.0000273, 0.0000287, 0.0000303, 0.0000294,
0.0000278, 0.0000257, 0.0000239, 0.0000223, 0.00002, 0.0000184,
0.0000163, 0.0000147, 0.0000129, 0.0000111, 9.1 * 10 ^ -6, 7.39 * 10 ^ -6,
5.42 * 10 ^ -6, 3.53 * 10 ^ -6, 2.1 * 10 ^ -6,
6,21 * 10 ^ -7, -1,29 * 10 ^ -6, -2,77 * 10 ^ -6, -3,92 * 10 ^ -6, -6,09 * 10 ^ -6, 
-7.55 * 10 ^ -6, -7.55 * 10 ^ -6, -0.0000111, -0.0000127, -0.0000146,
-0.000016, -0.0000176, -0.0000193, -0.0000208, -0.0000223,
-0.0000237, -0.0000252, -0.0000262, -0.0000262, -0.0000295,
-0.0000305, -0.0000314, -0.0000327, -0.0000334, -0.0000344,
-0.0000347, -0.0000353, -0.0000351, -0.0000349, -0.0000342,
-0.0000326, "", -0.0000197, 5.36 * 10 ^ -7,
7.15 * 10 ^ -6, 0.0000117, 0.0000154, 0.0000177, 0.0000192, 0.0000209,
0.0000214, 0.0000221, 0.0000225, 0.0000225, "", 0.0000229, 0.0000216, 
0.0000202, 0.0000194, 0.0000181, 0.0000171, 0.0000164, 0.000015,
0.0000133, 0.0000122, 0.0000103, "", 5.69 * 10 ^ -6,
2.4 * 10 ^ -6, -7.92 * 10 ^ -7, -2.57 * 10 ^ -6, -3.8 * 10 ^ -6, -5.73 * 10 ^ -6, 
-7.57 * 10 ^ -6, -9.38 * 10 ^ -6, -0.0000111, -0.0000132, -0.0000148,
-0.0000169, -0.0000183, -0.0000202, -0.0000218, -0.0000237,
-0.0000253, -0.000027, -0.0000284, -0.0000306, -0.0000317};

BField = {"ï" 10000.39258 ", 9926.71, 9753.31, 9553.6, 9353.67, 9153.66,
8953.65, 8753.5, 8553.29, 8353.13, 8153.14, 7953.13, 7752.97,
7552.86, 7353.25, 7153.36, 6953.29, 6753.62, 6553.47, 6353.31,
6153.6, 5953.9, 5753.44, 5552.94, 5353.2, 5153.07, 4953.16, 4753.47,
4553.01, 4353.3, 4153.54, 3953.03, 3752.89, 3552.98, 3353.06,
3152.92, 2952.87, 2752.98, 2553.19, 2353.5, 2153.44, 1952.88,
1752.74, 1552.62, 1352.12, 1152.4, 952.428, 752.302, 552.574, 352.34,
-151,947, -556,781, -652,343, -847,615, -1047,75, -1247,28, -1447,3,
-1647.63, -1847.38, -2047.14, -2247.47, -2447.92, -2647.83, -3154.02,
-3559.45, -3653.04, -3846.57, -4047.03, -4247.54, -4446.88, -4646.19, 
-4846.62, -5047.05, -5247.21, -5447.34, -5647.21, -5847.3, -6047.42,
-6247.12, -6446.82, -6646.87, -6846.88, -7046.54, -7246.27, -7446.34,
-7646.43, -7846.78, -8046.89, -8246.18, -8446.21, -8951.32, -9356.78,
-9451.92, -9647.21, -9846.9, -9973.31, -9926.79, -9753.78, -9554.16,
-9354.13, -9154.55, -8954.45, -8753.93, -8554.08, -8354.06, -8153.96,
-7954.24, -7754.61, -7554.58, -7354.49, -7154.46, -6954.43, -6754.8,
-6555.13, -6354.76, -6154.64, -5955.32, -5755.24, -5554.82, -5354.72, 
-5154.56, -4954.41, -4754.38, -4554.55, -4354.45, -4154.76, -3954.64,
-3754.54, -3555.01, -3355.44, -3155.4, -2954.92, -2755.14, -2555.44,
-2355.56, -2155.53, -1955.45, -1755.26, -1555.16, -1355.13, -1155.11, 
-954.979, -755.29, -555.501, -51.2047, 353.059, 449.119, 645.156,
844,884, 1044.6, 1245.1, 1445.18, 1644.92, 1845.08, 2045.35, 2245.77, 
2443.42, 2949.21, 3354.2, 3449.83, 3645.43, 3845.47, 4045.53, 4245.5,
4445.27, 4644.96, 4845.01, 5045.58, 5245.87, 5750.52, 6154.81,
6350.27, 6645.9, 6846.01, 7045.71, 7245.51, 7445.61, 7645.62,
7845.34, 8045.41, 8245.76, 8445.88, 8645.97, 8845.68, 9045.82,
9246.4, 9446.06, 9645.72, 9845.93, 9973.12};

datalist300K = Transpose @ {BField, BMoment};
p1 = ListLinePlot[datalist300K, PlotStyle -> {Blue}];
BMomentDia = (-7.61 * 10 ^ -9) * BField; (* I found the slope in Excel and I put it here, but I want to automatically find the slope *)
data2 = Transpose @ {BField, BMomentDia};
p2 = ListLinePlot[data2, PlotStyle -> {Dashed, Black}];
BMomentProcessed = BMoment - BMomentDia;
data3 = Transpose @ {BField, BMomentProcessed};
p3 = ListLinePlot[data3,  PlotStyle -> Red, Frame -> True, 
  FrameTicks -> True, Joined -> True, 
  FrameLabel -> {"Magnetic Field(Oe)", "Magnetization(emu)"}, 
  PlotRange -> {{-10000, 10000}, Automatic}, PlotStyle -> Thick, 
  BaseStyle -> {FontSize -> 15}, AspectRatio -> 3/5, Mesh -> {{0}}, 
  MeshFunctions -> {#2 &}, 
  MeshStyle -> Directive[Black, PointSize[.02]]]

enter the description of the image here

Finally, the curve drawn should look like the one in red, but I also want to extrapolate the missing points between the two. How to proceed?

plot – Möbius band in mathematica

Thank you for your contribution to Mathematica Stack Exchange!

  • Please make sure to respond to the question. Provide details and share your research!

But to avoid

  • Ask for help, clarification, or answer other answers.
  • Make statements based on the opinion; save them with references or personal experience.

Use MathJax to format equations. MathJax reference.

To learn more, read our tips for writing good answers.

plot – problem with old commands in maths

I'm trying to follow an example in an old book about this software, but it's impossible, because it uses old commands. it's very frustrating.

That's the example

enter the description of the image here

it's the code:

monopolo[q_: 1, r0_: {0, 0, 0}, r_: {x, y, x}] : = q / Sqrt[Sum[(r0[[i]]- r[[i]]) ^ 2, {i, 1, length[r0]}]]

square quadrapole:

square = (Monopolo[+q, {d/2, 0, d/2}] + Monopolo[-q, {d/2, 0, -d/2}] + Monopolo[+q, {-d/2, 0, -d/2}] + Monopolo[-q, {-d/2, 0, d/2}])

I need to represent this:

enter the description of the image here

I had this:

enter the description of the image here

and also graphic this: VEPlot I do not know was he is …

enter the description of the image here

It seems very simple to follow,
but it does not work for me.
Thanks in advance 🙂

plot – Can not trace function

I have a function P that depends on x, I've tried to plot the function but I do not get anything in the plot. I am also interested in finding the roots of the equation.
P = 2.686350117820842 * 10 ^ 2406 – 3.509147003769840 * 10 ^ 2403 x ^ 2 +
2.232334766012457 * 10 ^ 2400 x ^ 4 – 9.23321306009387 * 10 ^ 2396 x ^ 6 +
2.797063590071589 * 10 ^ 2393 x ^ 8 – 6.628019419459146 * 10 ^ 2389 x ^ 10 +
1.281285155718557 * 10 ^ 2386 x ^ 12 – 2.080706919967667 * 10 ^ 2382 x ^ 14 +
2.900600749513771 * 10 ^ 2378 x ^ 16 – 3.529683274215479 * 10 ^ 2374 x ^ 18 +
3.799572525545543 * 10 ^ 2370 x ^ 20 – 3.657654959609442 * 10 ^ 2366 x ^ 22 +
3.177358914380688 * 10 ^ 2362 x ^ 24 – 2.509839111095646 * 10 ^ 2358 x ^ 26 +
1.814625240727776 * 10 ^ 2354 x ^ 28 – 1.207688796217551 * 10 ^ 2350 x ^ 30 +
7.435446299837606 * 10 ^ 2345 x ^ 32 – 4.253490093370832 * 10 ^ 2341 x ^ 34 +
2.269657765882891 * 10 ^ 2337 x ^ 36 – 1.133608420161897 * 10 ^ 2333 x ^ 38 +
5.316334073138192 * 10 ^ 2328 x ^ 40 – 2.347664003997277 * 10 ^ 2324 x ^ 42 +
9.78698498875831 * 10 ^ 2319 x ^ 44 – 3.860713086508757 * 10 ^ 2315 x ^ 46 +
1.444181525125296 * 10 ^ 2311 x ^ 48 – 5.132934302120220 * 10 ^ 2306 x ^ 50 +
1.736544827340320 * 10 ^ 2302 x ^ 52 – 5.601566614600686 * 10 ^ 2297 x ^ 54 +
1.725478614191356 * 10 ^ 2293 x ^ 56 – 5.082900519602480 * 10 ^ 2288 x ^ 58 +
1.433830406931773 * 10 ^ 2284 x ^ 60 – 3.878031085948603 * 10 ^ 2279 x ^ 62 +
1,006838752933342 * 10 ^ 2275 x ^ 64 – 2.511998423431655 * 10 ^ 2270 x ^ 66 +
6.028870570737217 * 10 ^ 2265 x ^ 68 – 1.393250733667592 * 10 ^ 2261 x ^ 70 +
3.103089714603463 * 10 ^ 2256 x ^ 72 – 6.666587245054238 * 10 ^ 2251 x ^ 74 +
1.382638575445950 * 10 ^ 2247 x ^ 76 – 2.770397956252858 * 10 ^ 2242 x ^ 78 +
5.366842280628789 * 10 ^ 2237 x ^ 80 – 1,005858930607984 * 10 ^ 2233 x ^ 82 +
1.825072143393833 * 10 ^ 2228 x ^ 84 – 3.207869510983551 * 10 ^ 2223 x ^ 86 +
5.465159420757082 * 10 ^ 2218 x ^ 88 – 9,02987914428045 * 10 ^ 2213 x ^ 90 +
1.447724685668347 * 10 ^ 2209 x ^ 92 – 2,253389040532460 * 10 ^ 2204 x ^ 94 +
3.406776673880169 * 10 ^ 2199 x ^ 96 – 5.005069504865876 * 10 ^ 2194 x ^ 98 +
7.148720260786071 * 10 ^ 2189 x ^ 100 – 9.93076381228350 * 10 ^ 2184 x ^ 102 +
1.342300350538044 * 10 ^ 2180 x ^ 104 –
1.766031989976773 * 10 ^ 2175 x ^ 106 +
2.262514329562340 * 10 ^ 2170 x ^ 108 –
2.823472028631675 * 10 ^ 2165 x ^ 110 +
3.433398530687380 * 10 ^ 2160 x ^ 112 –
4.069647349352201 * 10 ^ 2155 x ^ 114 +
4.703474536791501 * 10 ^ 2150 x ^ 116 –
5.302034601457534 * 10 ^ 2145 x ^ 118 +
5.831164114332556 * 10 ^ 2140 x ^ 120 –
6.258630293213825 * 10 ^ 2135 x ^ 122 +
6.557411618941536 * 10 ^ 2130 x ^ 124 –
6.708541700709386 * 10 ^ 2125 x ^ 126 +
6.703098152426357 * 10 ^ 2120 x ^ 128 –
6.543047641701977 * 10 ^ 2115 x ^ 130 +
6.240840903503749 * 10 ^ 2110 x ^ 132 –
5.817849945123738 * 10 ^ 2105 x ^ 134 +
5.301914007185092 * 10 ^ 2100 x ^ 136 –
4.724378349510931 * 10 ^ 2095 x ^ 138 +
4.117052274652728 * 10 ^ 2090 x ^ 140 –
3.509479115559841 * 10 ^ 2085 x ^ 142 +
2.926816185721846 * 10 ^ 2080 x ^ 144 –
2.388492465214735 * 10 ^ 2075 x ^ 146 +
1.907675036517837 * 10 ^ 2070 x ^ 148 –
1.491457505406822 * 10 ^ 2065 x ^ 150 +
1.141602028087492 * 10 ^ 2060 x ^ 152 –
8.556279254594532 * 10 ^ 2054 x ^ 154 +
6.280413776807839 * 10 ^ 2049 x ^ 156 –
4.515326540439904 * 10 ^ 2044 x ^ 158 +
3.180167907726034 * 10 ^ 2039 x ^ 160 –
2.194478115710771 * 10 ^ 2034 x ^ 162 +
1.483853865742252 * 10 ^ 2029 x ^ 164 – 9.83300223305664 * 10 ^ 2023 x ^ 166 +
6,386617152824788 * 10 ^ 2018 x ^ 168 –
4.066288654597450 * 10 ^ 2013 x ^ 170 +
2.538161330896050 * 10 ^ 2008 x ^ 172 –
1.553400356631517 * 10 ^ 2003 x ^ 174 + 9.32263314135091 * 10 ^ 1997 x ^ 176 –
5.486951378176007 * 10 ^ 1992 x ^ 178 +
3.167420751645592 * 10 ^ 1987 x ^ 180 –
1.793518595659501 * 10 ^ 1982 x ^ 182 + 9.96261698489905 * 10 ^ 1976 x ^ 184 –
5.429364360014730 * 10 ^ 1971 x ^ 186 +
2.903165552666326 * 10 ^ 1966 x ^ 188 –
1,523280393092388 * 10 ^ 1961 x ^ 190 +
7.843499419670845 * 10 ^ 1955 x ^ 192 –
3.963668964374835 * 10 ^ 1950 x ^ 194 +
1.965969276987846 * 10 ^ 1945 x ^ 196 – 9.57152492960029 * 10 ^ 1939 x ^ 198 +
4.574490289152389 * 10 ^ 1934 x ^ 200 –
2.146310190307600 * 10 ^ 1929 x ^ 202 + 9.88690722332728 * 10 ^ 1923 x ^ 204 –
4.471730279011893 * 10 ^ 1918 x ^ 206 +
1.985938984779357 * 10 ^ 1913 x ^ 208 –
8.660807588686577 * 10 ^ 1907 x ^ 210 +
3.709190693138281 * 10 ^ 1902 x ^ 212 –
1.560103455468367 * 10 ^ 1897 x ^ 214 +
6.444739988049591 * 10 ^ 1891 x ^ 216 –
2.614921174621156 * 10 ^ 1886 x ^ 218 +
1,042162872740786 * 10 ^ 1881 x ^ 220 –
4.079981202301375 * 10 ^ 1875 x ^ 222 +
1.569087899814386 * 10 ^ 1870 x ^ 224 –
5.928203849050795 * 10 ^ 1864 x ^ 226 +
2.200417896059673 * 10 ^ 1859 x ^ 228 –
8,024391148585218 * 10 ^ 1853 x ^ 230 +
2.875159025345020 * 10 ^ 1848 x ^ 232 –
1.012212697232504 * 10 ^ 1843 x ^ 234 +
3.501534455222515 * 10 ^ 1837 x ^ 236 –
1.190248525711444 * 10 ^ 1832 x ^ 238 +
3.975802300137773 * 10 ^ 1826 x ^ 240 –
1.305071797366944 * 10 ^ 1821 x ^ 242 +
4.209984664855359 * 10 ^ 1815 x ^ 244 –
1.334677953421113 * 10 ^ 1810 x ^ 246 +
4.158484665287774 * 10 ^ 1804 x ^ 248 –
1.273410903504800 * 10 ^ 1799 x ^ 250 +
3.832555857332483 * 10 ^ 1793 x ^ 252 –
1.133720397800658 * 10 ^ 1788 x ^ 254 +
3.296336124395826 * 10 ^ 1782 x ^ 256 – 9.42052424742060 * 10 ^ 1776 x ^ 258 +
2.646343249978066 * 10 ^ 1771 x ^ 260 –
7.307246483464030 * 10 ^ 1765 x ^ 262 +
1.983381588790684 * 10 ^ 1760 x ^ 264 –
5.291900946277332 * 10 ^ 1754 x ^ 266 +
1.387961871579574 * 10 ^ 1749 x ^ 268 –
3.578580485948212 * 10 ^ 1743 x ^ 270 + 9.07022441316217 * 10 ^ 1737 x ^ 272 –
2,259984088022122 * 10 ^ 1732 x ^ 274 +
5.535776061884918 * 10 ^ 1726 x ^ 276 –
1.333038444619680 * 10 ^ 1721 x ^ 278 +
3.155750717810446 * 10 ^ 1715 x ^ 280 –
7.344512424651015 * 10 ^ 1709 x ^ 282 +
1.680457453641542 * 10 ^ 1704 x ^ 284 –
3.780070966485888 * 10 ^ 1698 x ^ 286 +
8.359561279291154 * 10 ^ 1692 x ^ 288 –
1.817527358656161 * 10 ^ 1687 x ^ 290 +
3.885034062551937 * 10 ^ 1681 x ^ 292 –
8.164455093279046 * 10 ^ 1675 x ^ 294 +
1.686863009334956 * 10 ^ 1670 x ^ 296 –
3.426526103596986 * 10 ^ 1664 x ^ 298 +
6.843069177401753 * 10 ^ 1658 x ^ 300 –
1.343603626786899 * 10 ^ 1653 x ^ 302 +
2.593672378394226 * 10 ^ 1647 x ^ 304 –
4.922466977085678 * 10 ^ 1641 x ^ 306 + 9.18489000822497 * 10 ^ 1635 x ^ 308 –
1.684953634573095 * 10 ^ 1630 x ^ 310 +
3.038952248333740 * 10 ^ 1624 x ^ 312 –
5.388656454536683 * 10 ^ 1618 x ^ 314 + 9.39412399337185 * 10 ^ 1612 x ^ 316 –
1.610087299983996 * 10 ^ 1607 x ^ 318 +
2.713049933388496 * 10 ^ 1601 x ^ 320 –
4.494475002293981 * 10 ^ 1595 x ^ 322 +
7.319986511537511 * 10 ^ 1589 x ^ 324 –
1.172057048939555 * 10 ^ 1584 x ^ 326 +
1.844977753834419 * 10 ^ 1578 x ^ 328 –
2.855182746212618 * 10 ^ 1572 x ^ 330 +
4.343834731262068 * 10 ^ 1566 x ^ 332 –
6.496885750019254 * 10 ^ 1560 x ^ 334 + 9.55268382834428 * 10 ^ 1554 x ^ 336 –
1.380795113437095 * 10 ^ 1549 x ^ 338 +
1.962058315283751 * 10 ^ 1543 x ^ 340 –
2.740743088982950 * 10 ^ 1537 x ^ 342 +
3,763510693306638 * 10 ^ 1531 x ^ 344 –
5.080199940292004 * 10 ^ 1525 x ^ 346 +
6.741017374907996 * 10 ^ 1519 x ^ 348 –
8.792674582153970 * 10 ^ 1513 x ^ 350 +
1.127356164004770 * 10 ^ 1508 x ^ 352 –
1.420820821885134 * 10 ^ 1502 x ^ 354 +
1.760146039983033 * 10 ^ 1496 x ^ 356 –
2.143296569804627 * 10 ^ 1490 x ^ 358 +
2.565267907439039 * 10 ^ 1484 x ^ 360 –
3.017814628293543 * 10 ^ 1478 x ^ 362 +
3.489426100729698 * 10 ^ 1472 x ^ 364 –
3.965601509627411 * 10 ^ 1466 x ^ 366 +
4.429447174196560 * 10 ^ 1460 x ^ 368 –
4.862581625296601 * 10 ^ 1454 x ^ 370 +
5.246292521230257 * 10 ^ 1448 x ^ 372 –
5.562850387720804 * 10 ^ 1442 x ^ 374 +
5.796853983427411 * 10 ^ 1436 x ^ 376 –
5.936466649461109 * 10 ^ 1430 x ^ 378 +
5.974406125055940 * 10 ^ 1424 x ^ 380 –
5.908572891940683 * 10 ^ 1418 x ^ 382 +
5.742241709894746 * 10 ^ 1412 x ^ 384 –
5.483792133412483 * 10 ^ 1406 x ^ 386 +
5.146008822434077 * 10 ^ 1400 x ^ 388 –
4.745032987972388 * 10 ^ 1394 x ^ 390 +
4.299084750681276 * 10 ^ 1388 x ^ 392 –
3.827097125901663 * 10 ^ 1382 x ^ 394 +
3.347403481153394 * 10 ^ 1376 x ^ 396 –
2.876602725419878 * 10 ^ 1370 x ^ 398 +
2.428694249104125 * 10 ^ 1364 x ^ 400 –
2.014533828230008 * 10 ^ 1358 x ^ 402 +
1.641619181562812 * 10 ^ 1352 x ^ 404 –
1.314175940961979 * 10 ^ 1346 x ^ 406 +
1.033486214800720 * 10 ^ 1340 x ^ 408 –
7.983852739018635 * 10 ^ 1333 x ^ 410 +
6.058474727899986 * 10 ^ 1327 x ^ 412 –
4.515886933994255 * 10 ^ 1321 x ^ 414 +
3.306264081366439 * 10 ^ 1315 x ^ 416 –
2.377563904131392 * 10 ^ 1309 x ^ 418 +
1.679237839489421 * 10 ^ 1303 x ^ 420 –
1.164829767485104 * 10 ^ 1297 x ^ 422 +
7.935376392911023 * 10 ^ 1290 x ^ 424 –
5.308987593571449 * 10 ^ 1284 x ^ 426 +
3.488020119181430 * 10 ^ 1278 x ^ 428 –
2.250365276668083 * 10 ^ 1272 x ^ 430 +
1.425663994840285 * 10 ^ 1266 x ^ 432 –
8.868588727457016 * 10 ^ 1259 x ^ 434 +
5.416861600574322 * 10 ^ 1253 x ^ 436 –
3,248472892534088 * 10 ^ 1247 x ^ 438 +
1.912630590577480 * 10 ^ 1241 x ^ 440 –
1.105566862790935 * 10 ^ 1235 x ^ 442 +
6.273680133767686 * 10 ^ 1228 x ^ 444 –
3.494815112791049 * 10 ^ 1222 x ^ 446 +
1.911046205638163 * 10 ^ 1216 x ^ 448 –
1,025754985147126 * 10 ^ 1210 x ^ 450 +
5.404076674469516 * 10 ^ 1203 x ^ 452 –
2.794372932035669 * 10 ^ 1197 x ^ 454 +
1.418114933715901 * 10 ^ 1191 x ^ 456 –
7.062874953045376 * 10 ^ 1184 x ^ 458 +
3.452018055249632 * 10 ^ 1178 x ^ 460 –
1.655633070050951 * 10 ^ 1172 x ^ 462 +
7,791700607210830 * 10 ^ 1165 x ^ 464 –
3.597947165977340 * 10 ^ 1159 x ^ 466 +
1.630078374010770 * 10 ^ 1153 x ^ 468 –
7.245523475293265 * 10 ^ 1146 x ^ 470 +
3.159472661882223 * 10 ^ 1140 x ^ 472 –
1,351507717181499 * 10 ^ 1134 x ^ 474 +
5.670960942548448 * 10 ^ 1127 x ^ 476 –
2.334014989068994 * 10 ^ 1121 x ^ 478 + 9.42179591677835 * 10 ^ 1114 x ^ 480 –
3.730100770024781 * 10 ^ 1108 x ^ 482 +
1.448230016133533 * 10 ^ 1102 x ^ 484 –
5.513881785888662 * 10 ^ 1095 x ^ 486 +
2.058508315152457 * 10 ^ 1089 x ^ 488 –
7.535202490236606 * 10 ^ 1082 x ^ 490 +
2.704305337139761 * 10 ^ 1076 x ^ 492 – 9.51493645106292 * 10 ^ 1069 x ^ 494 +
3.281827862724674 * 10 ^ 1063 x ^ 496 –
1.109571526718667 * 10 ^ 1057 x ^ 498 +
3.677001052421732 * 10 ^ 1050 x ^ 500 –
1.194262986031659 * 10 ^ 1044 x ^ 502 +
3,801388459062310 * 10 ^ 1037 x ^ 504 –
1.185736943005922 * 10 ^ 1031 x ^ 506 +
3.624144340194998 * 10 ^ 1024 x ^ 508 –
1,085326295119428 * 10 ^ 1018 x ^ 510 +
3.184336690499094 * 10 ^ 1011 x ^ 512 – 9.15265315360722 * 10 ^ 1004 x ^ 514 +
2.576970104042530 * 10 ^ 998 x ^ 516 – 7.106741460354884 * 10 ^ 991 x ^ 518 +
1.919527070100305 * 10 ^ 985 x ^ 520 – 5.077428255070817 * 10 ^ 978 x ^ 522 +
1.315169795939462 * 10 ^ 972 x ^ 524 – 3,335572468709188 * 10 ^ 965 x ^ 526 +
8.282680296727712 * 10 ^ 958 x ^ 528 – 2.013465565926689 * 10 ^ 952 x ^ 530 +
4.791268546923877 * 10 ^ 945 x ^ 532 – 1.115961983238396 * 10 ^ 939 x ^ 534 +
2.543898714625890 * 10 ^ 932 x ^ 536 – 5.674924283553106 * 10 ^ 925 x ^ 538 +
1.238761877862649 * 10 ^ 919 x ^ 540 – 2.645697031412988 * 10 ^ 912 x ^ 542 +
5.528066528310169 * 10 ^ 905 x ^ 544 – 1.129907715451902 * 10 ^ 899 x ^ 546 +
2.258937772190814 * 10 ^ 892 x ^ 548 – 4.416838093793809 * 10 ^ 885 x ^ 550 +
8.445361906230247 * 10 ^ 878 x ^ 552 – 1.578983472142473 * 10 ^ 872 x ^ 554 +
2.886301523822343 * 10 ^ 865 x ^ 556 – 5.157772274030366 * 10 ^ 858 x ^ 558 +
9.00927447280871 * 10 ^ 851 x ^ 560 – 1.538065326188156 * 10 ^ 845 x ^ 562 +
2.566057844702199 * 10 ^ 838 x ^ 564 – 4.183246440184080 * 10 ^ 831 x ^ 566 +
6.662906363258365 * 10 ^ 824 x ^ 568 – 1.036726908534393 * 10 ^ 818 x ^ 570 +
1.575657490425618 * 10 ^ 811 x ^ 572 – 2.338846202524272 * 10 ^ 804 x ^ 574 +
3.390226688499028 * 10 ^ 797 x ^ 576 – 4.798296448841429 * 10 ^ 790 x ^ 578 +
6.630097417686452 * 10 ^ 783 x ^ 580 – 8.942720476487491 * 10 ^ 776 x ^ 582 +
1.177274957509828 * 10 ^ 770 x ^ 584 – 1.512465267645572 * 10 ^ 763 x ^ 586 +
1.895972649294613 * 10 ^ 756 x ^ 588 – 2.318765940004212 * 10 ^ 749 x ^ 590 +
2.766292480448929 * 10 ^ 742 x ^ 592 – 3.218791725652668 * 10 ^ 735 x ^ 594 +
3.652393804987598 * 10 ^ 728 x ^ 596 – 4.040989068586522 * 10 ^ 721 x ^ 598 +
4.358706025852007 * 10 ^ 714 x ^ 600 – 4.582693468544262 * 10 ^ 707 x ^ 602 +
4.695803111075273 * 10 ^ 700 x ^ 604 – 4.688741559807496 * 10 ^ 693 x ^ 606 +
4.561319881825257 * 10 ^ 686 x ^ 608 – 4.322569644411743 * 10 ^ 679 x ^ 610 +
3.989688936013741 * 10 ^ 672 x ^ 612 – 3.585988266929982 * 10 ^ 665 x ^ 614 +
3.138177945893562 * 10 ^ 658 x ^ 616 – 2.673437612187067 * 10 ^ 651 x ^ 618 +
2.216715896777711 * 10 ^ 644 x ^ 620 – 1,788627818060961 * 10 ^ 637 x ^ 622 +
1.404174500186407 * 10 ^ 630 x ^ 624 – 1.072341751792931 * 10 ^ 623 x ^ 626 +
7.964800475641478 * 10 ^ 615 x ^ 628 – 5.752587779349611 * 10 ^ 608 x ^ 630 +
4.039372861699552 * 10 ^ 601 x ^ 632 – 2.757027740769818 * 10 ^ 594 x ^ 634 +
1.828763089939277 * 10 ^ 587 x ^ 636 – 1,178620216644649 * 10 ^ 580 x ^ 638 +
7.379038749201475 * 10 ^ 572 x ^ 640 – 4.486862605957440 * 10 ^ 565 x ^ 642 +
2.649162740835810 * 10 ^ 558 x ^ 644 – 1.518452940120143 * 10 ^ 551 x ^ 646 +
8.447396286832695 * 10 ^ 543 x ^ 648 – 4.560087893863542 * 10 ^ 536 x ^ 650 +
2.388087569454717 * 10 ^ 529 x ^ 652 – 1.212968867012339 * 10 ^ 522 x ^ 654 +
5.973994622973118 * 10 ^ 514 x ^ 656 – 2.852244673191626 * 10 ^ 507 x ^ 658 +
1.319787541596352 * 10 ^ 500 x ^ 660 – 5.917012482879806 * 10 ^ 492 x ^ 662 +
2.569599033701511 * 10 ^ 485 x ^ 664 – 1.080620010752694 * 10 ^ 478 x ^ 666 +
4.399494748327280 * 10 ^ 470 x ^ 668 – 1.733520668334456 * 10 ^ 463 x ^ 670 +
6.608801006599677 * 10 ^ 455 x ^ 672 – 2.436976545587831 * 10 ^ 448 x ^ 674 +
8.689185240682283 * 10 ^ 440 x ^ 676 – 2.994787739224995 * 10 ^ 433 x ^ 678 +
9.97398312034905 * 10 ^ 425 x ^ 680 – 3.208772811716005 * 10 ^ 418 x ^ 682 +
9.96838679970145 * 10 ^ 410 x ^ 684 – 2.989300706409979 * 10 ^ 403 x ^ 686 +
8.649909540838832 * 10 ^ 395 x ^ 688 – 2.414260480021974 * 10 ^ 388 x ^ 690 +
6.497036542475437 * 10 ^ 380 x ^ 692 – 1.685107150526525 * 10 ^ 373 x ^ 694 +
4.210534545492902 * 10 ^ 365 x ^ 696 – 1.013105481444205 * 10 ^ 358 x ^ 698 +
2.346299337286123 * 10 ^ 350 x ^ 700 – 5.227813821621668 * 10 ^ 342 x ^ 702 +
1.120092727822506 * 10 ^ 335 x ^ 704 – 2,306568812170204 * 10 ^ 327 x ^ 706 +
4.562790569051598 * 10 ^ 319 x ^ 708 – 8.665839615324031 * 10 ^ 311 x ^ 710 +
1.57929 * 10 ^ 304 x ^ 712 – 2.76013 * 10 ^ 296 x ^ 714 +
4.62324 * 10 ^ 288 x ^ 716 – 7,41716 * 10 ^ 280 x ^ 718 +
1,133897 * 10 ^ 273 x ^ 720 – 1.67291 * 10 ^ 265 x ^ 722 +
2.34855 * 10 ^ 257 x ^ 724 – 3.14893 * 10 ^ 249 x ^ 726 +
4.0292 * 10 ^ 241 x ^ 728 – 4.9159 * 10 ^ 233 x ^ 730 + 5.71392 * 10 ^ 225 x ^ 732 –
6.32137 * 10 ^ 217 x ^ 734 + 6.64985 * 10 ^ 209 x ^ 736 –
6.64492 * 10 ^ 201 x ^ 738 + 6.30048 * 10 ^ 193 x ^ 740 –
5.66194 * 10 ^ 185 x ^ 742 + 4.81655 * 10 ^ 177 x ^ 744 –
3.87369 * 10 ^ 169 x ^ 746 + 2.94125 * 10 ^ 161 x ^ 748 –
2.10534 * 10 ^ 153 x ^ 750 + 1.41845 * 10 ^ 145 x ^ 752 – 8.98 * 10 ^ 136 x ^ 754 +
5.33242 * 10 ^ 128 x ^ 756 – 2.96423 * 10 ^ 120 x ^ 758 +
1.53931 * 10 ^ 112 x ^ 760 – 7.45037 * 10 ^ 103 x ^ 762 +
3.35264 * 10 ^ 95 x ^ 764 – 1.39887 * 10 ^ 87 x ^ 766 + 5,39579 * 10 ^ 78 x ^ 768 –
1.91778 * 10 ^ 70 x ^ 770 + 6.25793 * 10 ^ 61 x ^ 772 – 1.86721 * 10 ^ 53 x ^ 774 +
5.07121 * 10 ^ 44 x ^ 776 – 1.24727 * 10 ^ 36 x ^ 778 + 2.76185 * 10 ^ 27 x ^ 780 –
5 46899 * 10 ^ 18 x ^ 782 + 9.60895 * 10 ^ 9 x ^ 784 – 14.8419 x ^ 786 +
1.9931 * 10 ^ -8 x ^ 788 – 2.29559 * 10 ^ -17 x ^ 790 + 2.22936 * 10 ^ -26 x ^ 792 –
1.78565 * 10 ^ -35 x ^ 794 + 1.14492 * 10 ^ -44 x ^ 796 –
5.63037 * 10 ^ -54 x ^ 798 + 1.98626 * 10 ^ -63 x ^ 800 –
4.45525 * 10? -73 x? 802 + 4.74795 * 10? -83 x? 804;
Ground[P, {x, 0, 100},PlotRange->All]

plot – handling issues

I trace geodetic data on an ellipsoid. My problem is that I can not do the manipulation, of a, b, c. From the starting point and the initial vector, the manipulation works well, but parameters of the ellipsoid (a, b, c) does not work.
My code:

Clear[a, b, c];
r[u_, v_] : = {a * Cos[u]* Cos[v], b * Cos[u]*Peach[v], c * Sin[u]};
Index[r, 1][u_, v_]    : = !  (
 * SubscriptBox[([PartialD]),  (u )] (r[u, v]) );
Index[r, 2][u_, v_]    : = !  (
 * SubscriptBox[([PartialD]),  (v )] (r[u, v]) );
g = table[
       Subscript[r, i][Subscript[u, 1], Index[u, 2]].Index[r, j][
         Subscript[u, 1], Index[u, 2]], {i, 2}, {j, 2}

;
invg = Inverse[g] // Simplify;
g[i_, j_, k_] : = 1/2 !  (
 * UnderoverscriptBox[([Sum]),  (l = 1 ),  (2 )

 (
 * SubscriptBox[(invg), (([[)(l, k)(]]) )] ((
 * SubscriptBox[([PartialD]),
SubscriptBox[(u), (j)]] * SubscriptBox[(g), (([[)(i, l)(]]) )] +
 * SubscriptBox[([PartialD]),
SubscriptBox[(u), (i)]] * SubscriptBox[(g), (([[)(j, l)(]]) )] -
 * SubscriptBox[([PartialD]),
SubscriptBox[(u), (l)]] * SubscriptBox[(g), (([[)(i, j)(]]) )]) ) ) ) /.
Index[u, m_] :> Index[u, m]

eqns = Table[ Subscript[u, k]& # 39; & # 39; 
 * UnderoverscriptBox[([Sum]),  (i = 1 ),  (2 )] (
 * UnderoverscriptBox[([Sum]),  (j = 1 ),  (2 )]g[i, j, k]*  (
 * SubscriptBox[(u), (j)]& # 39; )
 * SubscriptBox[(u), (i)]& # 39; )

;
Manipulate[
     geod = NDSolve[
       Join[eqns, {Subscript[u, 1][0]    == Index[l, 1],
Index[u, 2][0]    == Index[l, 2],
Index[u, 1]& # 39;[0] == Index[v, 1],
Index[u, 2]& # 39;[0] == Index[v, 2]}],
{Index[u, 1]
a = 1;
b = 2;
c = 1;
Show[Graphics3D[{Purple, Ellipsoid[{0, 0, 0}, {a, b, c}], Green,
PointSize[Large], Point[Dr[Index[Dr[subscript[r[Indice[r[Subscript[l, 1], Index[l, 2]]]}],
ParametricPlot3D[
r[Assess[Evaluate[Évaluer[Evaluate[Subscript[u, 1]
Assess[Index[subscript[Indice[Subscript[u, 2]
Plot Style -> Pink],
Image size -> 500,
Boxed -> False], {{Index[l, 1], 1}, - ([Pi]/ 2), [Pi]/
2}, {{Index[l, 2], 1}, - [Pi][Pi]}, {{T, 1}, 3,
100}, {{Index[v, 1], 1}, -3, 3}, {{Hint[v, 2], 1}, -3, 3}]

Someone can help me?

plot – ContourPlot: Defining global options for the bar legend

In my Mathematica notebook, I try to specify the overall appearance of contour curves. This is easily done with SetOptions:

SetOptions[ContourPlot, 
BaseStyle -> {FontFamily -> "Latin Modern Math",
FontSize -> 14}];

However, this does not apply to BarLegend:

    ContourPlot[Abs[Gamma[u + I v]]{u, -1.5, 1.5},
{v, -1.5, 1.5}, PlotLegends -> Automatic]

Contour plot of the gamma function.

I've tried to set global options for BarLegend:

SetOptions[BarLegend, LabelStyle -> {FontFamily 
-> "Latin Modern Math", FontSize -> 14}];

but that seems to have no effect! How can I achieve this goal?

PS: Use v.10.3.0