Question: Is the element $alpha$ in $pi_{2n-1}(operatorname{SO}(2n))$ representing the tangent bundle $TS^{2n}$ of the sphere $S^{2n}$ indivisible and not torsion?

My understanding so far β

An $operatorname{SO}(2n)$ bundle over $S^{2n}$ corresponds to an element in $pi_{2n}operatorname{BSO}(2n) =pi_{2n-1}operatorname{SO}(2n)$.

Not torsion: There does not exist any integer $m > 0$ such that $malpha$ is a trivial element.

Indivisible: There does not exist any integer $k > 1$ and any element $beta$ in $pi_{2n-1}operatorname{SO}(2n)$ such that $alpha=kbeta$.

Ref: Mimura, Toda: Topology of Lie groups. Chapter IV Corollary 6.14.