I am trying to trace the solution given in the code with regard to "g0", not with time "t". I don't know what to do to get the plot between the solution and the value "g0" which vary from 0 to 2. The initial conditions are also included in the text. The only thing I want is to plot between the solution and "g" for any arbitrary value of "t". If anyone can solve this problem, it's welcome.

```
w1 = 1;
gma1 = 0.005;
n1 = 1;
gma2 = 0.005;
G1 = 0.005;
delc = 1;
k1 = .1;
k2 = 0.1;
a1 = 0.07;
a2 = 0.58;
k0 = 0.1;
Q1 = 1.268;
del0 = 1;
N1 = 1;
ome = 1;
M1 = del0*(1 - Cos(ome*t));
s = ParametricNDSolveValue({V11'(t) - V21(t)*w1 - V12(t)*w1 == 0,
V12'(t) - V22(t)*w1 + w1*V11(t) + gma1*V12(t) -
Sqrt(2)*G1*a1*V13(t) - Sqrt(2)*G1*a2*V14(t) == 0,
V13'(t) - V23(t)*w1 + k1*V13(t) +
Sqrt(2)*G1*a2*V11(t) - (-G1*Q1 + delc)*V14(t) == 0,
V14'(t) - V24(t)*w1 + k1*V14(t) -
Sqrt(2)*G1*a1*V11(t) - (G1*Q1 - delc)*V13(t) == 0,
V21'(t) + V11(t)*w1 + gma1*V21(t) - Sqrt(2)*G1*a1*V31(t) -
Sqrt(2)*G1*a2*V41(t) - w1*V22(t) == 0,
V22'(t) + V12(t)*w1 + gma1*V22(t) - Sqrt(2)*G1*a1*V32(t) -
Sqrt(2)*G1*a2*V42(t) + w1*V21(t) + gma1*V22(t) -
Sqrt(2)*G1*a1*V23(t) - Sqrt(2)*G1*a2*V24(t) - gma2*(2*n1 + 1) ==
0, V23'(t) + w1*V13(t) + gma1*V23(t) - Sqrt(2)*G1*a1*V33(t) -
Sqrt(2)*G1*a2*V43(t) + k1*V23(t) +
Sqrt(2)*G1*a2*V21(t) - (-G1*Q1 + delc)*V24(t) == 0,
V24'(t) + V14(t)*w1 + gma1*V24(t) - Sqrt(2)*G1*a1*V34(t) -
Sqrt(2)*G1*a2*V44(t) + k1*V24(t) -
Sqrt(2)*G1*a1*V21(t) - (G1*Q1 - delc)*V23(t) == 0,
V31'(t) + k1*V31(t) +
Sqrt(2)*G1*a2*V11(t) - (-G1*Q1 + delc)*V41(t) - w1*V32(t) == 0,
V32'(t) + k1*V32(t) +
Sqrt(2)*G1*a2*V12(t) - (-G1*Q1 + delc)*V42(t) + w1*V31(t) -
Sqrt(2)*G1*a2*V34(t) - Sqrt(2)*G1*a1*V33(t) + gma1*V32(t) == 0,
V33'(t) + k1*V33(t) +
Sqrt(2)*G1*a2*V13(t) - (-G1*Q1 + delc)*V43(t) + k1*V33(t) +
Sqrt(2)*G1*a2*V31(t) - (-G1*Q1 + delc)*V34(t) - k0 == 0,
V34'(t) + k1*V34(t) +
Sqrt(2)*G1*a2*V14(t) - (-G1*Q1 + delc)*V44(t) + k1*V34(t) -
Sqrt(2)*G1*a1*V31(t) - (G1*Q1 - delc)*V33(t) == 0,
V41'(t) + k1*V41(t) -
Sqrt(2)*G1*a1*V11(t) - (G1*Q1 - delc)*V31(t) - w1*V42(t) == 0,
V42'(t) + k1*V42(t) +
Sqrt(2)*G1*a1*V12(t) - (G1*Q1 - delc)*V32(t) + w1*V41(t) -
Sqrt(2)*G1*a2*V44(t) - Sqrt(2)*G1*a1*V43(t) + gma1*V42(t) == 0,
V43'(t) + k1*V43(t) -
Sqrt(2)*G1*a1*V13(t) - (G1*Q1 - delc)*V33(t) + k1*V43(t) +
Sqrt(2)*G1*a2*V41(t) - (-G1*Q1 + delc)*V44(t) == 0,
V44'(t) + k1*V44(t) -
Sqrt(2)*G1*a1*V14(t) - (G1*Q1 - delc)*V34(t) + k1*V44(t) -
Sqrt(2)*G1*a1*V41(t) - (G1*Q1 - delc)*V43(t) - k0 == 0,
V11(0) == 1, V12(0) == 1, V13(0) == 0, V14(0) == 0, V21(0) == 0,
V22(0) == 1, V23(0) == 0, V24(0) == 0, V31(0) == 0, V32(0) == 0,
V33(0) == 0, V34(0) == 0, V41(0) == 0, V42(0) == 0, V43(0) == 0,
V44(0) == 0}, {V11, V12, V13, V14, V21, V22, V23, V24, V31, V32,
V33, V34, V41, V42, V43, V44},{t, 0, 100},g0);
P2 = Plot({Evaluate(1/2*(V11(t) + V22(t) - 2*V12(t))^(-1) /. s)}, {t,
0, 60}, PlotRange -> {0, 1}, Frame -> True,
FrameLabel -> {Style("Time", Bold, 20),
Style(" !(*SubscriptBox((S), (q)))", Bold, 20)},
FrameTicksStyle -> Directive(FontSize -> 20),
PlotStyle -> {Thickness(0.0005), Thickness(0.008)})
```